Nonparametric Estimation of a Generalized Additive Model with an Unknown Link Function
نویسنده
چکیده
This paper is concerned with estimating the mean of a random variable Y conditional on a vector of covariates X under weak assumptions about the form of the conditional mean function. Fully nonparametric estimation is usually unattractive when X is multidimensional because estimation precision decreases rapidly as the dimension of X increases. This problem can be overcome by using dimension reduction methods such as single-index, additive, multiplicative, and partially linear models. These models are non-nested, however, so an analyst must choose among them. If an incorrect choice is made, the resulting model is misspecified and inferences based on it may be misleading. This paper describes an estimator for a new model that nests single-index, additive, and multiplicative models. The new model achieves dimension reduction without the need for choosing between single-index, additive, and multiplicative specifications. The centered, normalized estimators of the new model’s unknown functions are asymptotically normally distributed. An extension of the new model nests partially linear models.
منابع مشابه
Oracle-efficient Nonparametric Estimation of an Additive Model with an Unknown Link Function
This paper describes an estimator of the additive components of a nonparametric additive model with an unknown link function. When the additive components and link function are twice differentiable with sufficiently smooth second derivatives, the estimator is asymptotically normally distributed with a rate of convergence in probability of . This is true regardless of the (finite) dimension of t...
متن کاملRate-optimal Estimation for a General Class of Nonparametric Regression Models with Unknown Link Functions
This paper discusses a nonparametric regression model that naturally generalizes neural network models. The model is based on a finite number of one-dimensional transformations and can be estimated with a one-dimensional rate of convergence. The model contains the generalized additive model with unknown link function as a special case. For this case, it is shown that the additive components and...
متن کاملEmpirical Likelihood for Nonparametric Additive Models
Nonparametric additive modeling is a fundamental tool for statistical data analysis which allows flexible functional forms for conditional mean or quantile functions but avoids the curse of dimensionality for fully nonparametric methods induced by high-dimensional covariates. This paper proposes empirical likelihood-based inference methods for unknown functions in three types of nonparametric a...
متن کاملNonparametric estimation of an additive model with a link function
This paper describes an estimator of the additive components of a nonparametric additive model with a known link function. When the additive components are twice continuously differentiable, the estimator is asymptotically normally distributed with a rate of convergence in probability of 2 / 5 n− . This is true regardless of the (finite) dimension of the explanatory variable. Thus, in contrast ...
متن کاملRank Estimation of Partially Linear Index Models
We consider a generalized regression model with a partially linear index. The index contains an additive nonparametric component in addition to the standard linear component, and the models dependent variable is transformed by a unknown monotone function. We propose weighted rank estimation procedures for estimating (i) the coe¢ cients for the linear component, (ii) the nonparametric component...
متن کامل